Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks

نویسندگان

  • Chi-Jie Lu
  • Tian-Shyug Lee
  • Chia-Mei Lian
چکیده

a r t i c l e i n f o Keywords: Sales forecasting Computer wholesaler Multivariate adaptive regression splines Artificial neural networks IT industry Artificial neural networks (ANNs) have been found to be useful for sales/demand forecasting. However, one of the main shortcomings of ANNs is their inability to identify important forecasting variables. This study uses multivariate adaptive regression splines (MARS), a nonlinear and non-parametric regression methodology, to construct sales forecasting models for computer wholesalers. Through the outstanding variable screening ability of MARS, important sales forecasting variables for computer wholesalers can be obtained to enable them to make better sales management decisions. Two sets of real sales data collected from Taiwanese computer wholesalers are used to evaluate the performance of MARS. The experimental results show that the MARS model outperforms backpropagation neural networks, a support vector machine, a cerebellar model articulation controller neural network, an extreme learning machine, an ARIMA model, a multivariate linear regression model, and four two-stage forecasting schemes across various performance criteria. Moreover, the MARS forecasting results provide useful information about the relationships between the forecasting variables selected and sales amounts through the basis functions, important predictor variables, and the MARS prediction function obtained, and hence they have important implications for the implementation of appropriate sales decisions or strategies. In the consumer-centric environment of today's business world, enterprises seeking good sales performance often need to maintain a balance between meeting customer demand and controlling inventory costs. Carrying a larger inventory allows customer demand to be satisfied at all times, but can result in over-stocking, leading to problems such as tied up capital, inventory writedowns, and reduced profit margins. Lower inventory levels, in contrast, may reduce inventory costs, but can result in opportunity costs arising from missed sale opportunities , reduced customer satisfaction, and other problems. Sales forecasting can be used to determine the required inventory level and avoid the problem of under/over-stocking. In addition, sales forecasting can have implications for corporate financial planning, marketing, client management, and other areas of business. Improving the accuracy of sales forecasts has therefore become an important aspect of operating a business. There is an extensive body of literature on sales forecasting in such very few studies center on sales forecasting in the information technology (IT) industry, especially for computer wholesalers. Lu and Wang [34] employed a combination of independent component analysis, growing hierarchical self-organizing maps, and support vector regression analysis …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking Bayesian neural networks for time series forecasting

We report a benchmarking of neural networks and regression techniques in a time series forecasting task. The estimation errors, computing costs and additional information obtained by Bayesian neural networks are compared with other neural network models and with Multivariate Adaptive Regression Splines (MARS). The Mackey Glass time series in chaotic regime was used to generate the two data sets...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

Sales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods

The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...

متن کامل

Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks

The power output capacity of a local electrical utility is dictated by its customers’ cumulative peak-demand electrical consumption. Most electrical utilities in the United States maintain peak-power generation capacity by charging for end-use peak electrical demand; thirty to seventy percent of an electric utility’s bill. To reduce peak demand, a real-time energy monitoring system was designed...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Decision Support Systems

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2012